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Abstract— A full wave analysis of microstrip floating line

structures by wavelet expansion method is presented. The surface
iutegral equation developed from a dyadic Green’s function is
solved by Galerkin’s method, with the integral kernel and the

unknown current expanded in terms of orthogonal wavelets.
Using the orthonormal wavelets (and scaling functions) with
compact support as basis functions and weighting functions, the

integral equation is converted into a set of linear algebraic equa-

tions, with the matrices nearly diagonal or block-diagonal due
to the localization, orthogonality, and cancellation properties of

the orthogonal wavelets. Limitations inherited in the traditional

orthogonal basis systems are released: The problem-dependent
normal modes have been replaced by the problem-independent
wavelets, preserving the orthogonality; the trade-off between

orthogonatity and continuity (e.g. subsectional basis functions
includhg pulse functions, roof-top functions, piecewise sinusoidal
functions, etc.) is well balanced by the orthogonal wavelets.

Numerical results are compared with measurements and previous

published data with good agreement.

I. MOtiVatiOn

G

ALERKIN’S method is a zero residual method if the

basis functions are orthogonal and complete, and thus

Galerkin’s method with orthogonal basis functions are gen-

erally more accurate and rapidly convergent [1]. Two types

of orthogonal basis functions are frequently utilized for elec-

tromagnetic field computation. Mode expansion method (or

mode-matching method) has often been applied to solve scat-

tering problems due to various discontinuities in waveguides

[2], [3], finlines [4] and microstrip lines [5]. Generally, this

technique is useful when the geometry of the structure can

be identified as two or more regions, each of them belonging

to a separable coordinate system. The basic idea in the mode

expansion procedure is to expand the unknown fields in the

individual regions in terms of their respective normal modes.

In fact, mode expansion method is identical to Galerkin’s

method using the normal mode functions as the basis functions.

Quite often the normal modes are made of the classical

orthogonal series systems such as trigonometrical, Legendre,

Bessel, Hertnite, Chebyshev, etc. Owing to the orthogonality

of the normal modes, a sparse system of linear algebraic
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equations is expected to be generated by the mode expansion

method. For general cases of arbitrary geometries and mate-

rial distributions, however, the mode functions are often too

difficult to be constructed.

The second class of orthogonal basis functions consists of

a class of subsectional bases, each of which is defined only in

a given subsection of the solution domain [6]. An advantage

of the subsectional bases is the localization property, that is,

each of the expansion coefficients affects the approximation of

the unknown function only over a subdomain of the region of

interest. Thus, often not only does it simplify the computation

but also leads easily to convergent solutions. In the subsec-

tional basis systems, generally, only partial orthogonality can

be attained, i.e., only the pair of bases whose supporting

regions do not overlap are orthogonal. Moreover, the higher

continuity order of the constructed bases is rendered, the

required supporting region is larger. Hence there exists a

trade-off between the orthogonality and the continuity for the

subsectional basis systems.

Even if the complete orthogonal bases with higher order

continuity are hard to build, the subsectional bases with

certain continuity order can be constructed widely (e.g. by

using polynomial interpolation functions). Especially the finite

element method [7], which has been universally applied in

engineering, is a subsectional basis method. So is the boundary

element method [8]. Because of the kind of orthogonality or

(say) localization that exists in subsectional basis systems,

the differential operator equations may yield sparse systems

of linear algebraic equations by using subsectional bases.

However, it is also noted that the subsectional basis systems

may not necessarily convert the integral operator equations

into sparse systems of linear algebraic equations.

Recently, a new category of orthogonal systems, “orthogo-

nal wavelets”, has appeared on the scene [9], [10]. In image

analysis and signal processing, wavelet representations have

become popular and useful tools [11]–[14] mainly due to the

multiresolution analysis and the localization properties in both

space and frequency domains. Orthogonal wavelets also have

several properties that are fascinating for electromagnetic field

computations. First, wavelets are sets of orthonormal bases of

L2 (R). They are problem-independent orthogonal bases and

thus are suitable for numerical computations for general cases.
Second, the trade-off between the orthogonality and continuity

is well balanced in orthogonal wavelet systems because now

the orthogonality always holds whether the supporting regions

are overlapped or not. One can build an orthogonal wavelet

system with any order of continuity, expecting larger support-
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ing regions as higher order of continuity is selected. Third, in

addition to the advantages of the traditional orthogonal basis

systems, orthogonal wavelets have a cancellation property such

that there is much more certainty to yield sparse systems of

linear algebraic equations [15].

Furthermore, orthogonal wavelets have localization prop-

erties in both the space and frequency domains. Therefore,

the decorrelation of the expansion coefficients occurs both

in the space and Fourier domains. Nevertheless, according

to the theory of multigrid processing [16], one can improve

convergence by operating on both fine and coarse grids to

reduce both the “high-frequency” and “low-frequency” com-

ponent errors between the approximate and exact solutions in

contrast to the traditional way of operating only on fine grids to

reduce the “high-frequency” component. The expansion with

subsectional bases actually is equivalent to the expansion on

the finest scale only (in fact, the pulse function is equivalent

to the scaling function of Haar’s bases). On the contrary, the

multiresolution analysis implemented by wavelet expansion

provides a multigrid method. Finally, the pyramid scheme

employed in the wavelet analysis provides fast algorithms [15].

So far, most previous electromagnetic modeling work on

high speed digital electronics is based on quasi-static as-

sumptions [ 17]–[20]. As a result, dispersion and losses due

to radiation and surface wave generated from discontinuities

are not properly addressed. Advanced modeling of microstrip

structures by spectral domain method [21], [22], by finite

difference time domain (FDTD) [23], [24] have been reported.

The surface integral equation method (SIE) with Green’s

functions as the integral kernels has been employed to study

microstrip structures [25]–[29]. To investigate microstrip dis-

continuities (e.g. open-end, gap, step change, T junction, etc.),

a number of subsectional modes, referred to as the piecewise

sinusoidal (PWS) basis functions, are used in the vicinities of

the discontinuities to model the nonuniformity of the current

in these regions [26]–[29]. The SIE approach uses the exact

Green’s function, taking into account the space wave and

surface wave, and therefore is an effective full wave analysis

for microstrip structures [25].

In this paper, the full wave analysis of microstrip float-

ing line structures is implemented by the wavelet expansion

method, where a system of linear algebraic equations is

obtained from the integral equation. The subsectional bases (a

number of piecewise sinusoidal modes) employed in [26]–[29]

are replaced by a set of orthogonal wavelets. In the numerical

example, we demonstrate that while the PWS basis yields full
matrix, the wavelet expansion results in a nearly diagonal

or nearly block-diagonal matrix; both approaches result in

very close answers. However, as the geometry of the problem

becomes more complicated, and consequently the resulting

matrix size increases greatly, the advantage of having nearly

diagonal matrix over full matrix will be more profound.

In Section II, the orthogonal wavelet theory is reviewed

briefly, followed by a summary of integral equation formula-

tion in Section 111. Section IV is dedicated to the implemen-

tation of the wavelet expansion method. Section V describes

the numerical evaluation of the integrals and the results are

given in Section VI.

II. ORTHOGONAL WAVELET THEORY

We shall only briefly review some results of the wavelet

theory relevant to the electromagnetic modeling work. For

more comprehensive discussions of the wavelets, the readers

are referred to monographs and books e.g., [9], [10].

A. Multiresolution Analysis, Scaling Functions and Wavelets

Since the multiresolution analysis (MRA) provides a natural

way for the understanding and construction of wavelet bases,

we begin with the MRA. A multiresolution analysis consists of

a nested sequence of closed subspaces V~. More precisely, if

there is a function ~(z) c L2 (R), called the scaling function,

such that its dilating and translating versions

$%>.(X) = 2m/24(2~% – n) (1)

form an orthonormal basis of the closed subspace Vm =

CzOSLz@J {#m,n(a): ?_L E Z} for m S Z (the set of integers),
and the subspace {V~ }mEZ satisfy the following properties

. . . CV–1CVOCV1CV2 C... (2)

dosL2 ()u ‘m =L2(R), n V~ = {0} (3)

mEZ mGZ

f(r) G Vm u f(2z) G Vm+l (4)

then a (or an orthogonal) multiresolution analysis is generated.

Once the scaling function q$(z) is selected, one may use it to

construct the “mother wavelet” @(z). It must be chosen such

that {@(x – n)} form an orthonormal basis of the orthogonal

complementary subspace W. of V. in VI. Then its dilating

and translating versions

V%..(Z) = 2m/24(2’mz - n) (5)

form an orthonormal basis of Wm, the orthogonal comple-

mentary subspace of Vm in Vm+l. Since

Vm+l ==v. @w. (6)

m ● Z, from (3) it follows that

@W. = L2(R) (7)

mEZ

and thus {tk.~ }~.~Gz is an orthonormal basis of L2(R).

Noting +(x), ~(~) s VI, there exist the following expan-

sions, called “dilation” equations

~(z) = ~ hkv@@(2x - /%) (8)

k

7JJ(Z) = ~gk@(2z -k) (9)

.k

Once g5(z) is specified, hk is known. It can be shown that

the wavelet @(z) can be easily generated by the last dilation

equation provided that one chooses

(JK = (–l)kh~–k (lo)
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B. Wavelet Expansion /

Based on (7), any ~(~) E L2(R) can be expanded as

f(x) = ~ (f(z), @m,n(z))’@rn>n(z) (11)
m,n

where ( .,. ) represents the inner product. In practice, one often

would like to approximate ~(z) in a subspace Vm

$(x) N AJ(z) ~ ~~m,n&Jz) (12)
n

where Am is the orthogonal projection operator onto Vm, and

?m n is the inner product of ~(x) and #m,m (z). The orthogonal

projection Amf(m) is often called an approximation of the

function ~(z) at the resolution 2rn. Equation (2) implies that

the approximation of a function at resolution 2rn contains all

the necessary information to compute the approximation of

the same function at a lower resolution 2m-1. Moreover (3)

ensures that every function ~(z) in L2 (R) can be approx-

imated as closely as desirable by its projection Amj(z) in

Vm and the projection will converge to the original function

as m approaches co.

Since Vm = Vm–l @ Wm.l, the above equation can also

be written as

~(z) N Amj(x) = An-l~(z) + Bn-l~(x) (13)

with

Bm_l~(~) = ~ ~m-l,.+m-l,n(x)

n

where Bn_ 1 is the orthogonal projection operator onto

Wm_l, and ~n-l,n is the inner product of j(x) and

@~-l,~(x). The above equation tells us two interesting
facts. First, the approximation of ~(x) at the resolution 2m

contains more information than that at the resolution 2m– 1

and the net difference is contained in the orthogonal projection

Bin-l $(z) of ~(x) in the orthogonal complement Win-l of

Vm_l in Vm. The difference of information between the

approximations of a function at the resolutions 2m and 2m– 1

is called the detail function at the resolution 2m – 1. Secondly,

by repeating this process, a more general decomposition can

be obtained

m—1

Am~(z) =%1 ~(z)+ ~ Bm/~(x) (14)

m!=ml

where ml ~ m – 1.

Due to the special properties of multiresolution analysis, the

wavelet decomposition and reconstruction can be implemented

by a fast algorithm, referred to as the pyramid algorithm [11],

[15].

C. 2-D Wavelet Expansion

The orthogonal wavelets can easily be extended to two-

dimensional case [11], [12]. Here we only review the particular

case of separable multiresolution approximations of L2 (R2 ).

For such multiresolution approximations, wavelets and an

MRA can be constructed from a separable function

9(Z> v) = $X~)f/Xv) (15)

Zx

Y -v /

i
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Fig. 1. Configuration of embedded floating line.

where @(x) is a 1-D scaling function. Now there are three or-

thogonal wavelets associated with the scaling function 9(x, y)

in L2(R2)

X(1)(X, y) = ‘f#(x)’O(Y)

)/)(x, y) = ‘4(X)4(Y)

X(3) (x, Y) = +(~)’ffxy)

where @(x) is a 1-D wavelet, Almost all

1-D wavelets can be extended to the 2-D

Any function P(x, z’) c L2 (R2) can be expanded into a

two-dimensional wavelet series

(16)

the properties of

wavelets directly.

+ Tflkdm,k(x’)om,n(x)l

+ ~ s:jf$mt,k(d)g%,, n(~) (17)

n,k

where m
‘f~h~ ~;k> ~n, k and S;k are, respec-

tively, the inner product of P(X> x’) with

tin,k(x’)~n,n(~), ~m,k(x’)~m,n(~)> &n,k(x’)&n,n(x) and

~~,k(z’)o~,n(x). -A two-dimensional version of the pyramid
scheme about the wavelet coefficients ~~,k, o~~, T~k and

s;~ can be found in [15].

III. BASIC FORMULATION

Fig. 1 shows the configuration of a buried microstrip floating

line isolated by the two gaps from a uniform transmission line,

where the substrate is assumed to extend to infinity in the trans-
verse directions and made of a nonmagnetic, homogeneous,

isotropic material of thickness d and relative permittivity

Er. Both the bottom ground plane and conductor strip are

considered as infinitesimally thin perfect electric conductors

in the following discussions. Furthermore, for simplicity, only

x-directed electric surface currents are assumed to flow on the
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lines, which, as was found in many previous work [21], [26],

is a good approximation as long as narrow lines (with respect

to the wavelength) are considered.

A. Green’s Function for a Grounded Dielectric

Slab and the Integral Equation

The dyadic Green’s function for a grounded dielectric slab

and the formulation of microstrip discontinuity were derived

using magnetic vector potential A [25], [26] or using the

normal components of E and H [30], [31]. Here we only quote

the relevant equations. The component of the dyadic Green’s

function for a grounded dielectric slab, GZZ, representing the

x-component of the electric field at (z, y, u) produced by a

unit x-directed infinitesimal dipole located at (z’, y’, a), can

be written as [29], [32]
mm

GZZ(Z, ylx’, y’) =
//

Qzz(kz, %)eJ~=(z-z’)
—m —co

where

“{(erk’-k:)(T.

k~ COS, [kz(d – a)]

)+jh sin [k(d – u)]} . sin (kza)

T. kz

+
j(l – E.)kzk: sin2 k2a)

mm ) (19)
IeLm )

with

kO =W - ZIJ = ~=

kf=k:–k:– k:; Im(kl) <0

k; =ev~~ – k: – kz.
Y’ Im(kl) <0

Te = kz cos (kzd) + jkl sin (kzd)

Tn = crkl cos (kzd) + jkz sin (kzd) (20)

As it was discussed in [25], [27], the zeros of T. and T~

represent the TE and TM surface wave modes, respectively.

Tm has always at least one zero in the whole frequency

range and thus the first TM surface wave mode has no cutoff

frequency [25].

The x-component of the electric field at z = a can be

formulated from the dyadic Green’s function as

E.(z, y) =
//

G.zz(x, !+’, y’)~.z(z’,/) dx’ dy’ (21)

where l,~x is the longitudinal electric surface current density,

which only exists over all metal regions. Since the lines are

assumed to be perfect conductors, an integral equation for

the surface current density can be obtained by enforcing the

x-component of the electric field on the lines to be zero

//
Grx(z, yld,y’)~.z(d, /) dd dy’ = O (22)

Usually, l,X (z, y) is written in the form of separated vari-

ables

l.X(X, y) = II(X) “ ~z(:!f) (23)

where the y-dependent factor 12(y) can be assumed as some

known real functions. For example, 12(y) was chosen as a

function 1 + /2y/w 13 to model the edge effect of the x-

direction current distribution along the y-dimension [28], [29].

Substituting the expressions (18) and (23) of GZZ and l.Z into

integral (22), multiplying the equation by 12(y) and integrating

the result with respect to y, yield an integral equation about

11(x) as

J
Pzz(z, X’)I1(Z’) dx’ = O (24)

where the kernel

mm

P..(z, d) =
//

Qm(kz>k,)l~,(ky)12
—cc —cc

The Fourier transform Fv (kv) of 12(y) is given by

J J

(7u/2)

Fv(kv) = 12(y) e-~k’y dy = 12(y) e-~k’Y dy
–(uJ/2)

(26)

B. Current Distributions

The total region under consideration consists of three subre-

gions incident region, transient region and transmitting region:

In the incident region, the current density is approximated as

the sum of incident and reflected waves, since the discontinu-

ities are far away and the effect of discontinuities is negligible.

Similarly in the transmitting region the current density is

expressed by transmitted waves. In the transient region, the

current density is nonuniformly distributed along the line

under the influence of the discontinuities. Correspondingly,

the (x-dependent factor of x-directed) electiic surface current

densities consist of four different terms: the incident, reflected,

transmitted traveling waves linc (T), I’ ‘f (z), It” (~) and a

term lJO’(Z) which is defined in the transient region (vicinity

of the discontinuitiesj and is used to model the nonuniform

current there. Mathematically

{

~nc(z) + ~“ef(z), –cc <z< –L

11(.c) = F“(x), –L~x~G+L

ItT (X), G+ L<x<co

(27)

where G = gl + 1 + gz; gl and gz are respectively the width

of gap 1 and gap 2; 1 is the length of the floating line. L is a

large enough real number that the effect of discontinuities is

negligible beyond x < –L or z > G + L.

Suppose that the incident wave is propagating along x

direction, one can write the incident electric current as

for (z, y) 6 S, where S is for all the lines. ~zn’(’~)= e-’kez) (28)
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the reflected electric current as

~~ef(z) = _Re~~.X, (29)

and the transmitted electric current as

ltr(~) = ~e-h(z-G) (30)

where R and T are the reflection and transmission coefficients,

respectively; k, is the effective propagation constant of the

uniform infinite microstrip line, which can easily be evaluated

(e.g. see [26] -[29]). Moreover, lZOc can be written as

(31)~~”’(z) = L)(x)+ ~(~)

(0, elsewhere

Since the continuity condition must be satisfied by electric

surface currents at the interfaces of the uniform current re-

gions and transient region and the electric surface currents

must be zero outside the lines, l(x) is required to meet the

homogeneous conditions

By solving integral (24) with condition (32), one can obtain

reflection coefficient R, transmission coefficient T and the

surface current distribution 1(x), l~oc (x) and 11(z). In the next

section the wavelet bases satisfying (32) will be introduced to

expand the current density 1(z) in the transient region.

IV. WAVELET EXPANSION AND MATRIX EQUATION

In this section, integral (24) is converted into a matrix

equation by using wavelet expansion technique.

A. Wavelet Expansions of Unknown Function and Kernel

Since computers and physical systems only have finite

precision, the exact functions are, in practice, represented

by their approximations at certain resolution or precision.

Based on the orthogonal wavelet theory in Section II, the

projection Am I(z) of the unknown function l(z) on the

subspace V~ provides an approximation at resolution 2m

and the function 1(x) can be approximated as closely as

desirable by its projection Am.l(x) as m increases. Let 2m’

be the resolution at which the projection A~h 1(x) gives a

sufficiently accurate approximation to 1(z). In the subspace

v ~h, a unique expansion (approximation) can be obtained as

t--’ ----i

x

–Igl-—l’+
Fig. 2. Layout of scaling functions (in V~h ) on floating line.

where d~k,~ ($) is the scaling function in V~k. Since 1(z) is
only defined on the conductors in the transient region, that is,

the intervals [–L, 0], [gl, gl + 1] and [G, G + L], the scaling

function beyond these three intervals should be deleted at the

boundaries. However it may lead to a solution that is difficult

to satisfy the condition (32). By using compactly supported

wavelets [33], one can easily delete the scaling functions

that are out of the regions of interest. As a consequence,

condition (32) is automatically satisfied. Fig. 2 sketches the

layout of scaling functions on the floating line, the incoming

and outgoing transmission lines in the_vicinity of the two gaps.

To exercise the cancellation property of a wavelet basis, the

above expansion about the scaling function is further converted

to a wavelet expansion through a multiresolution analysis

1(z) ~ AmhI(z)

—

+ ~ Tmt,n(ikt,n(x) (34)
n

where ~~,n (x) is the wavelet function of W ~ and ml S

m~ – 1.

Next, we expand the kernel in integral (24) as a two-variable
function in the two-dimensional wavelet series

+ P:kA?@(o&n,n($)

where ‘f~k I ~~k TT?k and .#k are the two-dimensional

wavelet coefficients defined by the inner product of F’XX(x, z?)

with vm,k(~’)vm,n(~), ?%,k(~’)%,n(~), #m,k(x’)&,n(z)

and ~~,~ (x’)~~,~ (x), respectively. Since V~ = Wm_I @

. . . @ W~l @ V~l for any m Z ml + L the scaling function
@m,n(z) 6 V~ can be expanded in terms of the wavelet

functions {ti~~ ,~~(z)}~/=~–1,... ,~~i~rcz ~d the scaling

functions {~m, ,n~(Z)}n~ ~Z. Hence, the above 2-D wavelet
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expansion can also be written in the following form

where $m,n (z) is defined

and

l+;”) = (Pu.(x, ~’)> A,k(oLn,n(J))

‘/ /
.CG .m

— PZL(X, z’)JL,k(z’)&l,,L(I’) d%’ fir
—m —m?

(37)

Usually (35) and (36) are, respectively, referred to the non-

standard form and standard form [10], [15]. There exists a
(m’) of stand~d form andrelation between the coefficients P. ~

the coefficients oJ:~, ~~~, ~~,n~and ;~~ of non-standard form

[32]. Using the notation of ~~,m(:z), and setting 1,,,),, = ~~,,,

if m > ml and 1,,,1_ 1,,, = 7,,,L ,,,, one can then rewrite (34) as

For ease of notation, ordering and counting the wavelet bases

in (36) and (38), and replacing double subscripts (i, k) and

(m, n) by their counting number 1 and q respectively, one can

then write (36) and (38) as

and

where M is the total number of basis functions in (38).

Equation (40) gives an approximation of 1(z) in the subspace

V~~. Notice that Daubechies’ scaling function of support

width 2iV – 1 gives rise to a wavelet whose expansions are

Nth-order convergent [34], thus the truncation error III(z) –

Am, 1(z) II of the approximation A,n, 1(J) to 1 (z) is bounded

as follows

where C is some positive constant.

B. Matrix Equation

Substitution of (27) and (31) in (24) leads to

/

G+L

~zz(z, z’)l(x’) dz’ + fl[-F(i”c) (z) – jFti’’5)(X)]
–L

+ T[F(*”’) (z) + jl?(~”’) (z)]

= [-$’(’”’)(z) + jF@’)(z)] (41)

where

Replacing P.. (r, z’) and 1(z) in (41) by their wavelet expan-

sions and multiplying @Q(~) both sides and integrating with

respect to r, one obtains

M

E pq>LL + Rpq,M+l + ‘TPq,M+Z= Bq (42)

1=1

for q = 1,2,. ... Ml + 2, where the orthogonality

(~,(’~), ~~(x)) = bqt has been used, and

J–m

(let = LTC,irs, tire, h-s)

Pq,l. F~’rc). F~’”), F~’7’) and F~trs) can be evaluated numer-

ically. Equation (42) is the matrix equation for the unknown

coefficients R, T, 11, Iz, . . . , Imf. The evaluation of the matrix

elements involves the rigorous dyadic Green’s function as

a kernel. The intractable behavior of this Green’s function,

including singularities and strong oscillations, makes the com-

putation of the expansion of the kernel in terms of wavelets

very sensitive to the numerical treatment. The numerical

aspects of expanding the kernel is described in the next section.

V. COMPUTATIONS OF SOMMERFELD-TYPE INTEGRALS

The evaluation of the elements Pg,l, F~i”’), F~’r’), F~tr’)

and ~~trs) is essentially to compute the Sommerfeld-type
integral

where jl (z) is a wavelet basis, while ~2(z’) can be either a

wavelet basis or a function related to ~,(. ) defined in Section

111. Substituting expression (25) of PZJ in (43) leads to

?R{F2(-kz)F:(kX)} dk. dkv (44)

where superscript * and the symbol R indicate, respectively,

the complex conjugate and the real part of a complex quantity,
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and

Fg(kz) =
/“

fg(z)e-~k” ciz (45)
—m

where q = 1 or 2. Equation (44) is a spectral domain

formulation.

The poles of QZ. come from zeros of the Te and Tm

functions, and represent the TE and TM surface waves, respec-

tively. Moreover, T~ has always at least one zero in the whole

frequency range, indicating’ that the first TM surface wave

mode has no cutoff frequency [25]. There are many techniques

which can be used for treating the singularities caused by those

TE and TM poles, including the contour deformation approach,

the folding technique, the pole extraction method and so on

[25]. Here, a pole extraction technique in junction with the

conventional folding method was used [28].

Although the singularities related to the zeros of T. and

Tm were readily treated, the integral in (44) has two other

difficulties: (1) very slow convergence; (2) rapid oscillation of

the integrand for large ~ =
G

kz + kz The two difficulties

are the consequence of the following facts that the Green’s

function (18) does not contain an explicit I/l? dependence for

the decay of the fields from the source and its image; this range

dependence (representing the source and image singularities)

must be synthesized by the continuous spectrum of plane

waves. This is the nature of the spectrum representation.

Fortunately, the source and image singularities can be shown

to be identical to the singularities arising from the same source

in a grounded homogeneous medium of relative permittivity

(see [27], [32]). The fields from this source and its image in

the homogeneous medium can be evaluated in closed-form.

Thus, it is possible to separate off the source and image

singularities in closed-form from the Green’s function for

a grounded dielectric slab, yielding the remaining integral

relatively well-behaved.

The component of the Green’s function for a grounded
homogeneous medium of relative permittivity e., G$Z, rep-

resenting the x-component of the electric field at (x, y, a)

produced by a unit x-directed infinitesimal dipole located at

(x’, y’, a), has a simple closed-form expression as follows (e.g.

[27])

“[
e–~L&o e–jkc R<O

R~o – R,. 1
(46)

where ke = ko~, Rso = J(z - Z’)z + (y - y’)z and

Rio = ~(z – Z’)2 + (y – y))2 + (2a)2. Moreover, its spec-

tral representation can be obtained [27], [32]

‘here‘e’=F==
Rewrite the dielectric slab Green’s function (18) as

GZZ(X, vI%’, g’) = G~Z(Z, yl$’, y’)

+ [GxZ(Z, ylz’, y’) – G~~(z, ylx’) y’)]

(49)

then (44) becomes

mm
P= Ph+4 // [Qm(k~, k,) - Q$z(km ku)]

. lFv(kvj2R;Fz(kz) F:(kz)} dkc dky (50)

where

ph =

P$x(x ,x’) =
J–co J-cc

. Iz(y’)lz(y) dy’ dy (52)

Using (47), P& can also be formulated in the spectral domain

and then a spectral representation of Ph is obtained as

Since the source and image singularities in G.Z are identical to

those in G~Z, QZZ and Q~Z have the same asymptotic form for

large 0 = ~-. Thus, the second term in (50) converges

fast. To compute Ph, either (51) or (54) can be used. Because

of the phases of terms eJk’ (Z–z’) in (53) and F2 (k~)~; (kz) in

(54), the integrands in (53) and (54) oscillate rapidly for large

other hand, the Green’s function G#Z in (52) has singularity

near point z = x’, but allows well convergent integration for

all other x. Therefore, a scheme for evaluating Ph is designed

as follows

● if the supporting regions of .fl ($) and j2 (z) do not

overlap, use the spatial formulations (51 ) and (52) to

compute Ph;

● if the supporting regions of ~1(z) and ~z(z) overlap,
rewrite ,fl (z) as f;(z) + ,f~ (x) and fz ($) as ~j (z) +

f~(~), where ~~(z) and ~~(x) share the common sup-
porting region, while ~{(%) and ~~ (x) are the remaining

parts whose support regions do not overlap. Then,

a) use the spectral formulation (54) to compute the

contribution to Ph by .f[ (x) jj (x’);
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Fig. 3. Daubechies’ wavelet and the Fourier transforms (N = 3). (a) ScaJing function 4(z); (b) mother wavelet ti(z ); (c) Fourier transforms @(()
of ~(r); (d) Fourier transforms 0( r) of d(z),

b) use the spatial formulations (51) and (52)
to compute the contributions to Ph by

.f[ (x) ~~ (~’), ~1’(x) .fj(x’), and ~;(z) ~I(z’).

Tocalculate theinfinite integrals related to f.(.), werede-

fine ~,(u) as

{

f.(u)= yut –M,7r < u <0

otherwise

where M. is a large integer [26], [28]. Numerical computations

demonstrated that the convergence can be achieved by setting

M. >6. The infinite integrations in (51) and (52) thus become

finite integrations since all .fl (z), ~~(z) and Iv(z) now are of

finite supports.

In order to use the spectral formulation, the Fourier trans-

form of the wavelet bases must be evaluated. By using dilation

(8), an iterative formulation of the Fourier transform O(t) of

#(z) is readily obtained

Q(g) = ?no(g/2)@(g/2) (.55)

where @(0) = m.(0) = 1 (noting that there is a difference

of a factor 1/@ between the Fourier transform defined by

(45) here and that in [33]), and mO(f) = l/fi X~ h~e-~k~.

Making the use of dilation (9) and relation (10), gives the

Fourier transform ‘J(<) of ~(z) in terms of @(f)

V(f) = –e-if/2m~(f/2 + 7r)@(~/2). (56)

Moreover, the Fourier transforms @~,n(t) and ~~,~(f) of
#%,~ (x) and ‘1%,~ ($) can easily be shown to have the forms

@m,n(&) = 2-m/2e-~t2-~n@(2-~<) (57)

~m,n(~)= 2-m/2e-~C2-m’~(2-mf) (58)

Generally, the infinite integrations in (50) and (54) can be

truncated at k= = kY ? 200ko with sufficient accuracy.

VI. NUMERICAL RESULTS AND

SPARSITY OF IMPEDANCE MATRIX

A FORTRAN program was written implementing the
procedure developed in the preceding sections. Daube~hies’

wavelets, one type of orthogonal wavelets with compact

support [9], [33], are employed for our calculations. Fig.

3 illustrates Daubechies’ wavelet and its Fourier transform for

IV = 3. It has been found that the convergence may speed up

by adding one edge basis near each end of the conductors into

the conventional wavelet basis (since the edge basis provides

a better representation to match the edge current distribution).

In this section, numerical results obtained from the wavelet

expansion method are compared with measurements and
computational results of the PWS basis functions, and the

improvement of the sparsity of the impedance matrix by using

the wavelets over the PWS basis is also illustrated. All of the

following examples are executed on the IBM RS-6000/530,

and roughly a factor of 2 in the CPU time savings of the

wavelet against PWS basis were recorded. We believe that

as the unknowns increase, and the matrix size grows, the

advantage of using wavelet basis will be more significant.

A. Numerical Results

Example l—Open ended microstrip transmission line: For

the first example, let us consider an open ended microstrip
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REFLECTION COEFFICIENT OF OPEN END

~n

I
00 o~

35.0
frequency in ‘GHz “

(a)

REFLECTIONCOEFFICIENTOF OPEN END
0“0 ~

-75”0 o~
14.0 21.0 20.0 35.0

frequency in GHz

(b)

Fig. 4. Comparison of results of open ended microstiip tmusruission line

using the wavelet expansion method and the spectrat domain method and

measurement. (a) Magnitude of the reflection coefficient (‘solid line’ wavelet.

‘o o o’ SDM). (b) Phase of the reflection coefficient (‘ sotid line’ w avelet,
‘0 00’ measurement).

transmission line with ET = 9.90, w = 0.6 mm and d = 0.635

mm. The magnitude and phase of the reflection coefficient are

calculated and compared with those of the spectral domain

method and measurement [22] in Figs. 4(a) and 4(b), respec-

tively. Good agreement between our results and the measured

values can be observed.

Example 2—Microstrip$oating line resonator: A microstrip

floating line with parameters c, = 8.875, / = 3.653 mm,

gl = gz = 0.08 mm and d = a = w = 0.508 mm (see

Fig. 1) is investigated in this example. To search for the

resonant frequency, the reflection and transmission coefficients

are computed at different frequencies. Fig. 5(a) depicts the

magnitudes of the reflection coefficient R and transmission

coefficient T versus frequency as computed by this method in

comparison with the calculations of the PWS basis functions

[28]. The results from this method agree well with those from

[28]. At the resonant frequency, the magnitude of the standing

wave current on the floating line as well as the local modes on

both sides of the floating line from this technique is illustrated

1.0
RESONANCE ON FLOATING LINE

i “7 .~

0.0 !-m-n-, 1 r

10.0 12.0 14.0 16.0 18.0 20.0
frequency in GHz

(a)

STANDING WAVE OF LOCAL MODES
8.0 I

i

-4.0 -2.0 0:0 2.0 4.0 6.0 6.0
floating lme in mm

(b)

Ftg. 5. Comparison of results of miocrostrip floating line resonator using
this method aud PWS basis functions. (a) magnitude of the reflection and
transmission coefficients versus frequency (‘solid line’ ]R] from wavelet,

‘- ---’ IZ’I from wavelet, ‘.......’ [Rl from PWS. ‘- .- .-’ ITI from
PWS). (b) Magnitude of the standing wave current on the floating line as
well as the local modes on both sides of the floating line (’solid line’ wavelet,
‘o 00’ Pws).

in Fig. 5(b) against the curve obtained by using the PWS basis

functions [28]. Again very good agreement between the two

sets of results is demonstrated. In this example, the CPIJ time

is about 4 hours for the PWS basis, and 2 hours for the wavelet

basis.

Example 3: Embedded microstrip jioating line resonator:

The wavelet expansion method is also applied to a buried

microstrip floating line. Given parameters in Fig. 1 as Cr =

10.0,1 = 14.00 mm, gl = g2 = 0.2 mm, d = 0.660

mm and a = w = 0.560 mm, we search for the resonant

frequency. The magnitudes of the reflection coefficient R

and transmission coefficient T versus frequency obtained

by the wavelet expansion method is plotted in Fig, 6(a).

The resonant frequency is obtained about 7.54 GHz. At

the resonant frequency, the magnitude of the standing wave

current on the buried floating line and the local modes on

both sides of the buried floating line are depicted in Fig. 6(b).
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Fig.6. Results ofembedded ticros&ip floating line resonator using wavelet

expansion method. (a) Magmtude of the reflection and transmission coef-
ficients versus frequency. (b) Magnitude of standing wave current on the
embedded floating line as well as the local modes on both sides of the
embedded floating line,

Comparing this example with example 4 in [29], all parameters

are the same except that the floating line in this example is

about half of that in [29], and all conductor lines are 0.10

mm narrower and embedded down 0.10 mm in the substrate.

There are two current lobes on the floating line here instead

of four current lobes as in [29] at the resonant frequency. The

resonant frequency decreases slightly from 8 GHz in [29] to

7.54 GHz here.

B. Sparsi@ of Impedance Matrices

As expected, the wavelet expansion method yields a sparse

impedance matrix [P~,l]. Figs. 7(a) and 7(b) illustrate, re-

spectively, the 3-D logarithmic plots of typical normalized

impedance matrices generated in example 2 by wavelet expan-

sion method (with mh = 15 and ml = 13) and by the PWS

basis functions [28]. It can be observed that the impedance

matrix from wavelets is nearly diagonal or block-diagonal.

Although the size ~ = 264 of the impedance matrix from

IMPEDANCE MATRIX [P]

(a)

-20
100

7 80 100

60 60

40

20

column j 00
row 1

(b)

Fig. 7. Comparison of impedance matricies in the computation of the current
distribution on rnicrostrip floating line resonator using this method and PWS
basis functions in example 2. (a) 3-D logarithmic plots of typical impedance
matrix by using wavelets. (b) 3-D logarithmic plots of typical impedance
matrix by using PWS basis functions.

wavelets is larger than the size ~ = 92 from PWS basis

functions, the effective size from wavelets is still smaller than

that from PWS basis functions due to the sparsity of the

impedance matrix from wavelets. The sparseness of the matrix

has even more profound significance for the problems where

large matrices are generated.

In order to give a measure of sparsity in an impedance

matrix, we replace each entry of a matrix by its magnitude

normalized by the magnitude of the largest element. Now the
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(a)

(b)

Fig. 8. Sparsity of impedance matrices. in the computation of the current
distribution on buried microstrip floating line resonator using tik method in
example 3. (a) Sparsity of typical impedance matrix with nh = 14 and ml =
13. ~) Sparsity of typical impedance matrix with m h = 14 and ml = 12.

entries below a threshold, say 10–6, are set to zero, and the

remaining entries are considered as the significant (non-zero)

elements, The ratio of the significant entries to the total entries
in the matrix measures the sparseness of the matrix. In Fig. 8(a)

the black ink shows the non-zero elements of an impedance

matrix in example 3 with rnh = 14 and mz = 13. A similar

result of the same problem in example 3 with more resolution

levels (mh = 14 and ml = 12) is depicted in Fig. 8(b). In

contrast, a full black square, representing a full matrix, will be

plotted if the PWS basis functions are used. From Fig. 8(a) of

the matrix 416 x 416 and Fig. 8(b) of the matrix 351 x 351 it

can be seen that as more resolution levels are used, the dense

“plateau” area of the impedance matrix shrinks. This is not

surprising. As the decomposition reaches more levels, more

wavelets and less scaling functions are used. The wavelets

possess cancellation and localization properties in addition to

the orthogonality that the scaling functions can only provide.

VII. CONCLUSION

In this paper, a full wave analysis of microstrip floating line

structures by wavelet expansion method has been presented.

Numerical results from the wavelet expansion method are

compared with measurements and previous published data

with good agreement. It has been demonstrated that the

replacement of the PWS bases by the orthogonal wavelets

with compact support can greatly improve the sparseness of

the resulting matrix from the boundmy integral equations, in

particular for problems involving large matrices.
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