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Full Wave Analysis of Microstrip Floating Line
Structures by Wavelet Expansion Method

Gaofeng Wang and Guang-Wen Pan, Senior Member, IEEE

Abstract— A full wave analysis of microstrip floating line
structures by wavelet expansion method is presented. The surface
integral equation developed from a dyadic Green’s function is
solved by Galerkin’s method, with the integral kernel and the
unknown current expanded in terms of orthogonal wavelets.
Using the orthonmormal wavelets (and scaling functions) with
compact support as basis functions and weighting functions, the
integral equation is converted into a set of linear algebraic equa-
tions, with the matrices nearly diagonal or block-diagonal due
to the localization, orthogonality, and cancellation properties of
the orthogonal wavelets. Limitations inherited in the traditional
orthogonal basis systems are released: The problem-dependent
normal modes have been replaced by the problem-independent
wavelets, preserving the orthogonality; the trade-off between
orthogonality and continuity (e.g. subsectional basis functions
including pulse functions, roof-top functions, piecewise sinusoidal
functions, etc.) is well balanced by the orthogonal wavelets.
Numerical results are compared with measurements and previous
published data with good agreement.

I. MOTIVATION

ALERKIN’S method is a zero residual method if the

basis functions are orthogonal and complete, and thus
Galerkin’s method with orthogonal basis functions are gen-
erally more accurate and rapidly convergent [1]. Two types
of orthogonal basis functions are frequently utilized for elec-
tromagnetic field computation. Mode expansion method (or
mode-matching method) has often been applied to solve scat-
tering problems due to various discontinuities in waveguides
[21, [3], finlines [4] and microstrip lines [5]. Generally, this
technique is useful when the geometry of the structure can
be identified as two or more regions, each of them belonging
to a separable coordinate system. The basic idea in the mode
expansion procedure is to expand the unknown fields in the
individual regions in terms of their respective normal modes.
In fact, mode expansion method is identical to Galerkin’s
method using the normal mode functions as the basis functions.
Quite often the normal modes are made of the classical
orthogonal series systems such as trigonometrical, Legendre,
Bessel, Hermite, Chebyshev, etc. Owing to the orthogonality
of the normal modes, a sparse system of linear algebraic
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equations is expected to be generated by the mode expansion
method. For general cases of arbitrary geometries and mate-
rial distributions, however, the mode functions are often too
difficult to be constructed.

The second class of orthogonal basis functions consists of
a class of subsectional bases, each of which is defined only in
a given subsection of the solution domain [6]. An advantage
of the subsectional bases is the localization property, that is,
each of the expansion coefficients affects the approximation of
the unknown function only over a subdomain of the region of
interest. Thus, often not only does it simplify the computation
but also leads easily to convergent solutions. In the subsec-
tional basis systems, generally, only partial orthogonality can
be attained, i.e., only the pair of bases whose supporting
regions do not overlap are orthogonal. Moreover, the higher
continuity order of the constructed bases is rendered, the
required supporting region is larger. Hence there exists a
trade-off between the orthogonality and the continuity for the
subsectional basis systems.

Even if the complete orthogonal bases with higher order
continuity are hard to build, the subsectional bases with
certain continuity order can be constructed widely (e.g. by
using polynomial interpolation functions). Especially the finite
element method [7], which has been universally applied in
engineering, is a subsectional basis method. So is the boundary
element method [8]. Because of the kind of orthogonality or
(say) localization that exists in subsectional basis systems,
the differential operator equations may yield sparse systems
of linear algebraic equations by using subsectional bases.
However, it is also noted that the subsectional basis systems
may not necessarily convert the integral operator equations
into sparse systems of linear algebraic equations.

Recently, a new category of orthogonal systems, “orthogo-
nal wavelets”, has appeared on the scene [9], [10]. In image
analysis and signal processing, wavelet representations have
become popular and useful tools [11]-[14] mainly due 1o the
multiresolution analysis and the localization properties in both
space and frequency domains. Orthogonal wavelets also have
several properties that are fascinating for electromagnetic field
computations. First, wavelets are sets of orthonormal bases of
L?(R). They are problem-independent orthogonal bases and
thus are suitable for numerical computations for general cases.
Second, the trade-off between the orthogonality and continuity
is well balanced in orthogonal wavelet systems because now
the orthogonality always holds whether the supporting regions
are overlapped or not. One can build an orthogonal wavelet
system with any order of continuity, expecting larger support-
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ing regions as higher order of continuity is selected. Third, in
addition to the advantages of the traditional orthogonal basis
systems, orthogonal wavelets have a cancellation property such
that there is much more certainty to yield sparse systems of
linear algebraic equations [15].

Furthermore, orthogonal wavelets have localization prop-
erties in both the space and frequency domains. Therefore,
the decorrelation of the expansion coefficients occurs both
in the space and Fourier domains. Nevertheless, according
to the theory of multigrid processing [16], one can improve
convergence by operating on both fine and coarse grids to
reduce both the “high-frequency” and “low-frequency” com-
ponent errors between the approximate and exact solutions in
contrast to the traditional way of operating only on fine grids to
reduce the “high-frequency” component. The expansion with
subsectional bases actually is equivalent to the expansion on
the finest scale only (in fact, the pulse function is equivalent
to the scaling function of Haar’s bases). On the contrary, the
multiresolution analysis implemented by wavelet expansion
provides a multigrid method. Finally, the pyramid scheme
employed in the wavelet analysis provides fast algorithms [15].

So far, most previous electromagnetic modeling work on
high speed digital electronics is based on quasi-static as-
sumptions [17]-[20]. As a result, dispersion and losses due
to radiation and surface wave generated from discontinuities
are not properly addressed. Advanced modeling of microstrip
structures by spectral domain method [21], [22], by finite
difference time domain (FDTD) [23], [24] have been reported.
The surface integral equation method (SIE) with Green’s
functions as the integral kernels has been employed to study
microstrip structures [25]-[29]. To investigate microstrip dis-
continuities (e.g. open-end, gap, step change, T junction, etc.),
a number of subsectional modes, referred to as the piecewise
sinusoidal (PWS) basis functions, are used in the vicinities of
the discontinuities to model the nonuniformity of the current
in these regions [26]-[29]. The SIE approach uses the exact
Green’s function, taking into account the space wave and
surface wave, and therefore is an effective full wave analysis
for microstrip structures [25].

In this paper, the full wave analysis of microstrip float-
ing line structures is implemented by the wavelet expansion
method, where a system of linear algebraic equations is
obtained from the integral equation. The subsectional bases (a
number of piecewise sinusoidal modes) employed in [26]-[29]
are replaced by a set of orthogonal wavelets. In the numerical
example. we demonstrate that while the PWS basis yields full
matrix, the wavelet expansion results in a nearly diagonal
or nearly block-diagonal matrix; both approaches result in
very close answers. However, as the geometry of the problem
becomes more complicated, and consequently the resulting
matrix size increases greatly, the advantage of having nearly
diagonal matrix over full matrix will be more profound.

In Section II, the orthogonal wavelet theory is reviewed
briefly, followed by a summary of integral equation formula-
tion in Section III. Section IV is dedicated to the implemen-
tation of the wavelet expansion method. Section V describes
the numerical evaluation of the integrals and the results are
given in Section VL

II. ORTHOGONAL WAVELET THEORY

We shall only briefly review some results of the wavelet
theory relevant to the electromagnetic modeling work. For
more comprehensive discussions of the wavelets, the readers
are referred to monographs and books e.g., [9], [10].

A. Multiresolution Analysis, Scaling Functions and Wavelets

Since the multiresolution analysis (MRA) provides a natural
way for the understanding and construction of wavelet bases,
we begin with the MRA. A multiresolution analysis consists of
a nested sequence of closed subspaces V,,,. More precisely, if
there is a function ¢(z) € L?(R), called the scaling function,
such that its dilating and translating versions

G () = 2724(2™x — n) 1)

form an orthonormal basis of the closed subspace V,, =
closp:®y{Pmn(x): n € Z} for m € Z (the set of integers),
and the subspace { V., }mez satisty the following properties

- CV_1CcVgCViCVyC--- 2)

closy,z ( U Vm> =L*(R), ﬂ V. ={0} 3
meZ meZ

f(x) eV, <= f(22) € Viqa @

then a (or an orthogonal) multiresolution analysis is generated.

Once the scaling function ¢(x) is selected, one may use it to
construct the “mother wavelet” ¢(x). It must be chosen such
that {¢(x — n)} form an orthonormal basis of the orthogonal
complementary subspace Wy of Vi in V. Then its dilating
and translating versions

Gmon(®) =222 2 — n) (5)

form an orthonormal basis of W, the orthogonal comple-
mentary subspace of V,,, in V,,,1. Since

Vm+1 = Vm ¥ Wm (6)
m € 7, from (3) it follows that

P W, =L*(R)

meZ

N

and thus {%m » }m nez i an orthonormal basis of L?(R).
Noting ¢(z),¥(z) € V4, there exist the following expan-
sions, called “dilation” equations

$x) =D hiv2¢(2w — k) ®)

W)= gV2¢(2z — k) )

Once ¢(z) is specified, by is known. It can be shown that
the wavelet () can be easily generated by the last dilation
equation provided that one chooses

gt = (—=1)*h1_y, (10)



WANG AND PAN. FULL WAVE ANALYSIS OF MICROSTRIP FLOATING LINE STRUCTURES 133

B. Wavelet Expansion
Based on (7), any f(z) € L2(R) can be expanded as

f(m) = Z (f(a:), "/’m,n(w»'@bm,n(x)

m,n

11

where (-, - ) represents the inner product. In practice, one often
would like to approximate f(z) in a subspace V,,

F@) >~ Amf(@) = Tonnbmn(@) (12)
where A, is the orthogonal projection operator onto V ,,, and
F . is the inner product of f(z) and ¢y (). The orthogonal
projection A, f(z) is often called an approximation of the
function f(z) at the resolution 2™. Equation (2) implies that
the approximation of a function at resolution 2™ contains all
the necessary information to compute the approximation of
the same function at a lower resolution 2™~1. Moreover (3)
ensures that every function f(x) in L2(R) can be approx-
imated as closely as desirable by its projection A, f(z) in
V., and the projection will converge to the original function
as m approaches <.

Since V,, = V.1 @ W,,,_1, the above equation can also
be written as

f(@) 2 An f(z) = A1 f(2) + Bro1f(2)
with

(13)

Bmh_lf(w) = Z fm—l,n'l/)m-—l,n(x)

where B,,.1 is the orthogonal projection operator onto
W1, and f,_1, is the inner product of f(z) and
Ym—-1,n(x). The above equation tells us two interesting
facts. First, the approximation of f(x) at the resolution 2™
contains more information than that at the resolution 27™~!
and the net difference is contained in the orthogonal projection
B,.—1f(z) of f(x) in the orthogonal complement W,,_; of
V-1 in V,,. The difference of information between the
approximations of a function at the resolutions 2™ and 2™~1
is called the detail function at the resolution 2™~1. Secondly,
by repeating this process, a more general decomposition can
be obtained
m—1
Anf(z) = Am, f(z) + Z B f()

m'=my

(14)

where m; < m — 1.

Due to the special properties of multiresolution analysis, the
wavelet decomposition and reconstruction can be implemented
by a fast algorithm, referred to as the pyramid algorithm [11],
[15].

C. 2-D Waveler Expansion

The orthogonal wavelets can easily be extended to two-
dimensional case [11], [12]. Here we only review the particular
case of separable multiresolution approximations of LZ(R?).
For such multiresolution approximations, wavelets and an
MRA can be constructed from a separable function

p(z,y) = ¢(z)(y) (15)

T

Sandl

Fig. 1.

Configuration of embedded floating line.

where ¢(x) is a 1-D scaling function. Now there are three or-
thogonal wavelets associated with the scaling function ¢(z, y)
in L2(R?)
X (z,y) =9(2)b(y)
X (z,y) = ¢(x)¢(y)
X® (@, y) = d(x)(y)
where ¢(z) is a 1-D wavelet. Almost all the properties of
1-D wavelets can be extended to the 2-D wavelets directly.

Any function P(z,2’) € L?(R?) can be expanded into a
two-dimensional wavelet series

P(:E,SEI) = Z Z[amkdjm,k(xl)"pm,n(x)

m=m; n,k

(16)

+ ﬂ$k¢m,k(x/)¢m,n($)
+ ’Y;ijqsm,k(w/)ipm,n (517)]
+ Z Szlk ml,k(x/)¢ml,n(x) (7
n,k
where a7y, B, vy, and  sPh,are,  respec-
tively, the inner product of P(x,z’) with
¢m,k($,)¢m,n(m)a 1:bm,k (x,)qsm,n (37), ¢m,k(m/)¢m,n($) and

G k(@' YPpm n(x). A two-dimensional version of the pyramid
scheme about the wavelet coefficients aﬁk,ﬂ,ﬁfk,fy;’jk and
szk can be found in [15].

1II. BASIC FORMULATION

Fig. 1 shows the configuration of a buried microstrip floating
line isolated by the two gaps from a uniform transmission line,
where the substrate is assumed to extend to infinity in the trans-
verse directions and made of a nonmagnetic, homogeneous,
isotropic material of thickness d and relative permittivity
€. Both the bottom ground plane and conductor strip are
considered as infinitesimally thin perfect electric conductors
in the following discussions. Furthermore, for simplicity, only
%x-directed electric surface currents are assumed to flow on the
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lines, which, as was found in many previous work [21], [26],
is a good approximation as long as narrow lines (with respect
to the wavelength) are considered.

A. Green’s Function for a Grounded Dielectric
Slab and the' Integral Equation

The dyadic Green’s function for a grounded dielectric slab
and the formulation of microstrip discontinuity were derived
using magnetic vector potential A [25], [26] or using the
normal components of E and H [30], [31]. Here we only quote
the relevant equations. The component of the dyadic Green’s
function for a grounded dielectric slab, G, , representing the
x-component of the clectric field at (z,y,a) produced by a
unit X-directed infinitesimal dipole located at (+/,%',a), can
be written as [29], [32]

Gwz(m7y|xl’y/) = / / Q’c.ﬂ(kmaky)e']kz(z_m,)

R =) gk dk, (18)
where
. 2y
Qr.v(l".l‘u ky) =-=J 47‘(267-]60
' {(erkg B kz)(kz cos , [k2(d — a)]
T:
n jky sin [ka(d — a)]}) sin (k2a)
T. ko
§(1 = €. )kgk? sin? kya)
+ T, (19)
with
ko =w\/poco Zoy = /o]0
ki =ky—k2—k);  Im(k) <0
k3 = e ki — - /ﬂg; Im (k1) <0
T. =ks cos (k’zd) + jk‘l sin (kzd)
T = €rky1 cos (kad) + jko sin (kod) 20

As it was discussed in [25], [27], the zeros of T, and T,
represent the TE and TM surface wave modes, respectively.
T, has always at least one zero in the whole frequency
range and thus the first TM surface wave mode has no cutoff
frequency [25].

The X-component of the electric field at z = a can be
formulated from the dyadic Green's function as

Em("Lvy) = // Ga;x(x,y|$/,y/)15x(£l,y/) da’ dy/ (21)

where I, is the longitudinal electric surface current density,
which only exists over all metal regions. Since the lines are
assumed to be perfect conductors, an integral equation for
the surface current density can be obtained by enforcing the
x-component of the electric field on the lines to be zero

/ / G (.9l oV e (o) i’ dyf = 0

for (x,y) € S, where S is for all the lines.

22)

Usually, I;.(z,y) is written in the form of separated vari-
ables

Iso(2,y) = Ii(=) - Ix(y) (23)

where the y-dependent factor I5(y) can be assumed as some
known real functions. For example, I>(y) was chosen as a
function 1 + |2y/w|® to model the edge effect of the %-
direction current distribution along the y-dimension [28], [29].
Substituting the expressions (18) and (23) of G, and I, into
integral (22), multiplying the equation by I5(y) and integrating
the result with respect to y, yield an integral equation about
Ii(z) as

/Pm(x,x’)fl(x') d’ =0 (24)
where the kernel
Pulwa) = [ [ Qualhas )|y )P
- ek =) g dk, (25)
The Fourier transform Fy(k,) of I5(y) is given by
(w/2)
Fk) = [ B dy= [ e ay
—(w/2)
(26)

B. Current Distributions

The total region under consideration consists of three subre-
gions incident region, transient region and transmitting region:
In the incident region, the current density is approximated as
the sum of incident and reflected waves, since the discontinu-
ities are far away and the effect of discontinuities is negligible.
Similarly in the transmitting region the current density is
expressed by transmitted waves. In the transient region, the
current density is nonuniformly distributed along the line
under the influence of the discontinuities. Correspondingly,
the (x-dependent factor of X-directed) electric surface current
densities consist of four different terms: the incident, reflected,
transmitted traveling waves I"°(z), I"¢f(z), I*"(z) and a
term I'°“(z) which is defined in the transient region (vicinity
of the discontinuities) and is used to model the nonuniform
current there. Mathematically

Ie(g) + It (z), —oco<az<—~L
Ii(x) = ¢ I'*(z), ~L<z<G+1L
I'"(z), G+L<z<oo

@7

where G = g1 + [ + g9; 91 and go are respectively the width
of gap 1 and gap 2; { is the length of the floating line. L is a
large enough real number that the effect of discontinuities is
negligible beyond z < —L or > G + L.

Suppose that the incident wave is propagating along X
direction, one can write the incident electric current as

I'"e(x) = e ther, (28)
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the reflected electric current as

I (z) = —Redkex, (29)
and the transmitted electric current as
It (z) = Te~*(==C) (30)

where R and T are the reflection and transmission coefficients,
respectively; k. is the effective propagation constant of the
uniform infinite microstrip line, which can easily be evaluated
(e.g. see [26]-[29]). Moreover, I'°¢ can be written as

1'°%(z) = Ip(x) + I(x) 31)

where

([0- P (o 3) =50+ At

-L<z<0
T|fu(kel@ = 2] + 5 ) + ifulkelG - a])],
G<z<G+L

elsewhere

fw = {5

Since the continuity condition must be satisfied by electric
surface currents at the interfaces of the uniform current re-
gions and transient region and the electric surface currents
must be zero outside the lines, I(x) is required to meet the
homogeneous conditions

I(-L) =G+ L) = I(z)|o<z<g, = 1(2)|g1+1<o<c =0
(32)

\ 0,

u<0
otherwise

By solving integral (24) with condition (32), one can obtain
reflection coefficient R, transmission coefficient 7' and the
surface current distribution I(x), I'°*(z) and I; (). In the next
section the wavelet bases satisfying (32) will be introduced to
expand the current density I(z) in the transient region.

IV. WAVELET EXPANSION AND MATRIX EQUATION

In this section, integral (24) is converted into a matrix
equation by using wavelet expansion technique.

A. Wavelet Expansions of Unknown Function and Kernel

Since computers and physical systems only have finite
precision, the exact functions are, in practice, represented
by their approximations at certain resolution or precision.
Based on the orthogonal wavelet theory in Section II, the
projection A,,I(z) of the unknown function I(z) on the
subspace V,, provides an approximation at resolution 2™
and the function I(z) can be approximated as closely as
desirable by its projection A, I(x) as m increases. Let 2™*
be the resolution at which the projection A,,, I(z) gives a
sufficiently accurate approximation to I(xz). In the subspace
V., , @ unique expansion (approximation) can be obtained as

I(z) 2 A, I(2) = Y Ty nbmun(®)  (33)

| |
| G "

Fig. 2. Layout of scaling functions (in V., ) on floating line.

where ¢, »(z) is the scaling function in V,,, . Since I(z) is
only defined on the conductors in the transient region, that is,
the intervals [—L,0], (91,91 + ] and [G,G + L], the scaling
function beyond these three intervals should be deleted at the
boundaries. However it may lead to a solution that is difficult
to satisfy the condition (32). By using compactly supported
wavelets [33], one can easily delete the scaling functions
that are out of the regions of interest. As a consequence,
condition (32) is automatically satisfied. Fig. 2 sketches the
layout of scaling functions on the floating line, the incoming
and outgoing transmission lines in the vicinity of the two gaps.

To exercise the cancellation property of a wavelet basis, the
above expansion about the scaling function is further converted
to a wavelet expansion through a multiresolution analysis

I(x) = A, I(2)

mh—l

= Z Z jm,nwm,n(w)

m=m; n

+ 3 Ty nbmin(2) (34)

where 9., n(z) is the wavelet function of W, and m; <
mp — 1.

Next, we expand the kernel in integral (24) as a two-variable
function in the two-dimensional wavelet series

wa(l‘,x/) = Z Z[Oéztk'l/’m,k(wl)wm,n(x)

m=m; n,k

+ ﬁmkdlm,k(x/)ﬁi)m,n(w)
+ 'Vrrzrfk(ﬁm,k('r/)lpm,n(x)]

+ 3 5 k() bmon () (35)
n,k

where oy, B, vy and s, are the two-dimensional
wavelet coefficients defined by the inner product of Py, (xz, )
with ’d)m,k(m/)f(pm,n(m)a'l/}m,k(w’)(ﬁm,n(x)a¢m,k($,)¢m,n($)
and ¢y k(%) Pm (), respectively. Since V., = Wp,_1 &
- ® Wy, &V, for any m > m; + 1, the scaling function
®mn(x) € V., can be expanded in terms of the wavelet
functions {9/ n(€) }m/=m—1,-.,min’cz and the scaling
functions {@m, n'(2)}n’cz. Hence, the above 2-D wavelet
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expansion can also be written in the following form

Z ZP(m. l)'l//z ("E wmn(.Z) (36)

my=m;—1 n,k

Pz, o) =

where gzrmn(x) is defined

5 S tma(z) form>m
V(@) = {¢mz,n($) for m = mi -1

and

Py(:Z,Z) = <P-ET (;L’, 'I‘Cl)v llzzz,k(wl)'l;'m,n(-lj»

= /Oo /oo PIL(IE', x/)qut,k(x’)q/:m’” (.L) dm’ dr
o (37)

Usually (35) and (36) are, respectively, referred to the non-
standard form and standard form [10], [15]. There exists a
relation between the coefficients P( ) of standard form and
the coefficients 'k Bt fyn L and s’” ', of non-standard form
[32]. Using the notation of z/;m,n(zz) and setting 1,,, , = Ton
itm>myand I, 1, = Tml,n- one can then rewrite (34) as

mp—1

Z Zlm nl/;m,n('L)

m=m;—1 n

I(z)= A, I(z) = (38)

For ease of notation, ordering and counting the wavelet bases
in (36) and (38), and replacing double subscripts (i, k) and
(rn,n) by their counting number / and g respectively, one can
then write (36) and (38) as

Puo(z,2') =Y Path(a ydy(z) (39)
y.l
and
A .
I(x) = A, I(z) = Lgthg(z) (40)
g=1

where M is the total number of basis functions in (38).
Equation (40) gives an approximation of I{x) in the subspace
V., - Notice that Daubechies’ scaling function of support
width 2/V — 1 gives rise to a wavelet whose expansions are
Nth-order convergent [34], thus the truncation error ||/(z) —
A, I(z)|| of the approximation A, I(.) to {(x) is bounded
as follows

(@) = A, I(@)]] < C27m

where C is some positive constant.

B. Matrix Equation
Substitution of (27) and (31) in (24) leads to

G+L
/.L Py (z,2)I(x') dz’ + R[~F ) (z) — jFE) ()]

+ TIFE(z) + F ()]

[ F(zrc)( )—l—jF(ﬂs)( )] 41)

where
F(WC)(x) _ /oo zz(x o )fs( e-'L' -+ 2)d /
Frs) (.[') _ /OC PxT(m,x/)fs(l\Je{B’) dx’

—00

Fro)(z) = /_00 Por(z,2')fs (ke[G -]+ g) dz’

F(trs)(x) — /

Replacing P,, (x,z’) and I(z) in (41) by their wavelet expan-
sions and multiplying %,(:) both sides and integrating with
respect to x, one obtains

Poo(@,2') fs(ke|G — ']) do’

M

2

for ¢ = 1,2,---,M + 2, where

(), ¥1(z)) = by has been used, and

Pq,l = / / ) Pcv(mﬂm/)q/;l(w,)&q(x) dx’ dz

— __Fq(u-c)
qu\f—f—? :Fq(tr C) - ]Fq(trs)

Bq — _ﬁwq(&?’C) + qu(Lps)
B = [P0, 0 do
(let =

i+ RPy a1 + TPy a0 = By (42)

the orthogonality

1Jq,]t[+l _jl_(wq(ira)

wre, irs, tre, trs)

P B FY FY and FET) can be evaluated numer-
ically. Equation (42) is the matrix equation for the unknown
coefficients R, T, 1,12, - -, Iy;. The evaluation of the matrix
elements involves the rigorous dyadic Green’s function as
a kemel. The intractable behavior of this Green’s function,
including singularities and strong oscillations, makes the com-
putation of the expansion of the kernel in terms of wavelets
very sensitive to the numerical treatment. The numerical
aspects of expanding the kernel is described in the next section.

V. COMPUTATIONS OF SOMMERFELD-TYPE INTEGRALS

The evaluation of the elements P, ; F(”C) F; (urs) F(t“)

and F{" s essentially to compute the Sommerfeld-type
integral

P = /_o:: [z Pxx(x,wl)fz(w’)fl(x) de’ dz (43)

where fi(x) is a wavelet basis, while fo(z') can be either a
wavelet basis or a function related to f;(-) defined in Section
ILL. Substituting expression (25) of P,, in (43) leads to

P =4/0 /O Qo (ko By )| Fy (Fey )2
R{E (ko) FY (k) } ke, dEy @4

where superscript * and the symbol R indicate, respectively,
the complex conjugate and the real part of a complex quantity,
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and

Fy(ky) = / fo(z)e™T*=" dy (45)
where ¢ = 1 or 2. Equation (44) is a spectral domain
formulation.

The poles of ()., come from zeros of the T, and T,
functions, and represent the TE and TM surface waves, respec-
tively. Moreover, T, has always at least one zero in the whole
frequency range, indicating that the first TM surface wave
mode has no cutoff frequency [25]. There are many techniques
which can be used for treating the singularities caused by those
TE and TM poles, including the contour deformation approach,
the folding technique, the pole extraction method and so on
[25]. Here, a pole extraction technique in junction with the
conventional folding method was used [28].

Although the singularities related to the zeros of 7. and
T,. were readily treated, the integral in (44) has two other
difficulties: (1) very slow convergence; (2) rapid oscillation of
kZ + k2. The two difficulties
are the consequence of the following facts that the Green’s
function (18) does not contain an explicit 1/ R dependence for
the decay of the fields from the source and its image; this range
dependence (representing the source and image singularities)
must be synthesized by the continuous spectrum of plane
waves. This is the nature of the spectrum representation.

Fortunately, the source and image singularities can be shown
to be identical to the singularities arising from the same source
in a grounded homogeneous medium of relative permittivity

& +1
€, = { > a=d

€r a<d
(see [27], [32]). The fields from this source and its image in
the homogeneous medium can be evaluated in closed-form.
Thus, it is possible to separate off the source and image
singularities in closed-form from the Green’s function for
a grounded dielectric slab, yielding the remaining integral
relatively well-behaved.

The component of the Green’s function for a grounded
homogeneous medium of relative permittivity e., G"_, rep-
resenting the X-component of the electric field at (z,y,a)
produced by a unit %-directed infinitesimal dipole located at
(«',9/,a), has a simple closed-form expression as follows (e.g.

the integrand for large 8 =

27
17 52
G ’ Py — 140 2y 2
e~ JkRso e JkeRio
. [ RsO a RzO :| (46)
where k. = ko 5e7 0 = {E—a)?+(y—y)? and

Rio = /(z — )2 + (y — ¥')? + (2a). Moreover, its spec-
tral representation can be obtained [27], [32]
Ghtele' ) = [ [ Qi)

. elbe(z—x )eJky(y y') dk.,, dk;y @7

with
h J%0 K-k —9%kera
k - — _ JHRel 4
mx(kw7 y) 47I'2k'0 2]65kel [1 € ] ( 8)
where ko = /k2 — k2 — k2.

Rewrite the dielectric slab Green’s function (18) as

G(’EI"I)(‘{L" y|$l7 y/)
+ [Gz$($a ylx/v y/) -

Gmm(wa ylxla yl) =
Gl (=, gl o))

49)
then (44) becomes
P:Ph+4/ / [Que (ks ky) — QR (Kyy k)]
\Fy (ky) PR{F (ko) Fy (k) } dig dy (50)

where
= [ Pt e st ' ds
P (s, 2') / / Gt (.l ¥)

(51)
I(y') a(y) dy' dy

', can also be formulated in the spectral domain

(52)
Using (47), P,

Phee)= [ [ Qb kB

- edke(@=2) gk dk, (53)
and then a spectral representation of P" is obtained as
i [ Qb I
- R{Fa(ky) Fi (kz)} dky dky (54)

Since the source and image singularities in G, are identical to
those in G*, Q.. and Q" have the same asymptotic form for

large B = /k2 + k2. Thus, the second term in (50) converges
fast. To compute P*, either (51) or (54) can be used. Because
of the phases of terms e/*=(*~") in (53) and Fy(k,)Fy (k) in
(54), the integrands in (53) and (54) oscillate rapidly for large
8 =
other hand, the Green’s function G in (52) has singularity
near point z = 2/, but allows well convergent integration for
all other z. Therefore, a scheme for evaluating P" is designed
as follows

o if the supporting regions of fi(z) and fa(z) do not
overlap, use the spatial formulations (51) and (52) to
compute P*;

« if the supporting regions of fi(x) and fo(x) ovetlap,
rewrite f1(x) as f7(x) + fi(s) and fa(z) as f5(x) +
f5(x), where f{(x) and f3(x) share the common sup-
porting region, while f7(z) and f§(x) are the remaining
parts whose support regions do not overlap. Then,

a) use the spectral formulation (54) to compute the
contribution to P* by f{(z) f5(z');

2 4 kg, except when z is very close to z’. On the



138 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 1, JANUARY 1995

14 T T T T
12 b ¢ —
08
06
04
0.2

-02
-0.4

0.9 F
0.8 - .
07 b .
0.6 .
o) o5 7
04 F .
0.3 F y

T
i

0.1

-15 -10 -5

MmO

©

2 T T T T

15 v

P(x)

15 L 1 L 1
-2 -1 0 1 2 3

0.9
0.8
0.7
0.6
0.5 -
0.4
0.3 .
02
0.1

T

L=
|
1

T T
1 1

T
|

v(¢)

T
L

T
i

T
{

-15 -10 -5

oo

()]

Fig. 3. Daubechies’ wavelet and the Fourier transforms (N = 3). (a) Scaling function ¢(x); (b) mother wavelet ¥(x); (c) Fourier transforms ®(¢ )

of ¢(x); (d) Fourier transforms T(r) of ¥(x).

b) use the spatial formulations (51) and (52)
to compute the contributions to P"* by
fi(x) f5 ("), f1 () f3(a). and f7 () f5(a").

To calculate the infinite integrals related to f(-), we rede-
fine fs(u) as

fs(u) = {?)iqn *

where M is a large integer [26], [28]. Numerical computations
demonstrated that the convergence can be achieved by setting
M, > 6. The infinite integrations in (51) and (52) thus become
finite integrations since all fi(z), f2(«) and I, (z) now are of
finite supports.

In order to use the spectral formulation, the Fourier trans-
form of the wavelet bases must be evaluated. By using dilation
(8), an iterative formulation of the Fourier transform b(&) of
#(z) is readily obtained

(&) = mo(&/2)2(¢/2)

where ®(0) = mo(0) = 1 (noting that there is a difference
of a factor 1//27 between the Fourier transform defined by
(45) here and that in [33]), and mo(€) = 1/v/2 Sy hye k¢,
Making the use of dilation (9) and relation (10), gives the
Fourier transform W(&) of 1(x) in terms of ®(¢)

T(¢) = —e_’f/Qij(f/Z +m)®(£/2).

Moreover, the Fourier transforms ®,,,,(£) and ¥, ,(£) of
¢m,n(x) and ¥, () can easily be shown to have the forms

—Ma<u<0
otherwise

(35)

(56)

B (€) = 2727082 TP (27 (57)

W o (€) =27M/2e73827 g (27 m) (58)

Generally, the infinite integrations in (50) and (54) can be
truncated at k, = k, =~ 200k, with sufficient accuracy.

VI. NUMERICAL RESULTS AND
SPARSITY OF IMPEDANCE MATRIX

A FORTRAN program was written implementing the
procedure developed in the preceding sections. Daubechies’
wavelets, one type of orthogonal wavelets with compact
support [9], [33], are employed for our calculations. Fig.
3 illustrates Daubechies” wavelet and its Fourier transform for
N = 3. Tt has been found that the convergence may speed up
by adding one edge basis near each end of the conductors into
the conventional wavelet basis (since the edge basis provides
a better representation to match the edge current distribution).
In this section, numerical results obtained from the wavelet
expansion method are compared with measurements and
computational results of the PWS basis functions, and the
improvement of the sparsity of the impedance matrix by using
the wavelets over the PWS basis is also illustrated. All of the
following examples are executed on the IBM RS-6000/530,
and roughly a factor of 2 in the CPU time savings of the
wavelet against PWS basis were recorded. We believe that
as the unknowns increase, and the matrix size grows, the
advantage of using wavelet basis will be more significant.

A. Numerical Results

Example 1—Open ended microstrip transmission line: For
the first example, let us consider an open ended microstrip
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Fig. 4. Comparison of results of open ended microstrip transmission line
using the wavelet expansion method and the spectral domain method and
measurement. (a) Magnitude of the reflection coefficient (‘solid line’ wavelet.
‘0 0 0’ SDM). (b) Phase of the reflection coefficient (*solid line’ wavelet,

‘0 0 0’ measurement),

transmission line with €, = 9.90,w = 0.6 mm and d = 0.635
mm. The magnitude and phase of the reflection coefficient are
calculated and compared with those of the spectral domain
method and measurement [22] in Figs. 4(a) and 4(b), respec-
tively. Good agreement between our results and the measured
values can be observed.

Example 2—Microstrip floating line resonator: A microstrip
floating line with parameters ¢, = 8.875,/ = 3.653 mm,
g1 = g2 = 008 mm and d = ¢ = w = 0.508 mm (see
Fig. 1) is investigated in this example. To search for the
resonant frequency, the reflection and transmission coefficients
are computed at different frequencies. Fig. 5(a) depicts the
magnitudes of the reflection coefficient R and transmission
coefficient T" versus frequency as computed by this method in
comparison with the calculations of the PWS basis functions
[28]. The results from this method agree well with those from
[28]. At the resonant frequency, the magnitude of the standing
wave current on the floating line as well as the local modes on
both sides of the floating line from this technique is illustrated
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Fig. 5. Comparison of results of miocrostrip floating line resonator using
this method and PWS basis functions. (a) magnitude of the reflection and
transmission coefficients versus frequency (‘solid line’|R| from wavelet,
‘———="|T| from wavelet, ‘... |R| from PWS. ‘= . - . = |T| from
PWS). (b) Magnitude of the standing wave current on the floating line as
well as the local modes on both sides of the floating line (‘solid line’ wavelet,
‘0 00" PWS).

-4.0

in Fig. 5(b) against the curve obtained by using the PWS basis
functions [28]. Again very good agreement between the two
sets of results is demonstrated. In this example, the CPU time
is about 4 hours for the PWS basis, and 2 hours for the wavelet
basis.

Example 3: Embedded microstrip floating line resonator:
The wavelet expansion method is also applied to a buried
microstrip floating line. Given parameters in Fig. 1 as ¢, =
10.0,£ = 14.00 mm, g; = g = 0.2 mm, d = 0.660
mm and ¢ = w = 0.560 mm, we search for the resonant
frequency. The magnitudes of the reflection coefficient R
and transmission coefficient T versus frequency obtained
by the wavelet expansion method is plotted in Fig. 6(a).
The resonant frequency is obtained about 7.54 GHz. At
the resonant frequency, the magnitude of the standing wave
current on the buried floating line and the local modes on
both sides of the buried floating line are depicted in Fig. 6(b).



140 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES. VOL. 43, NO. 1, JANUARY 1995

RESONANCE ON BURIED FLOATING LINE

1.0

e
v

magnitude of R and T
=) =3 =
IS o ®

L0 O e e B s s s e s By e
7.0 7.2 7.4 7.6 7.8 8.0
frequency in GHz
@
TWO LOBE STANDING WAVE
10.0
8.0 —
- —
=}
@ =
1]
; -
o 6.0
o 4
[}
o i
1 i
£ 4.0 H
= 4
&0 u
@
g 4
2.0 —
0.0 N

I
=

16 o 24.0
floatlng lme in mm

(b)

Fig. 6. Results of embedded microstrip floating line rosonator using wavelet
expansion method. (a) Magnitude of the reflection and transmission coef-
ficients versus frequency. (b) Magnitude of standing wave current on the
embedded floating line as well as the local modes on both sides of the
embedded floating line.

Comparing this example with example 4 in [29], all parameters
are the same except that the floating line in this example is
about half of that in [29], and all conductor lines are 0.10
mm narrower and embedded down 0.10 mm in the substrate.
There are two current lobes on the floating line here instead
of four current lobes as in [29] at the resonant frequency. The
resonant frequency decreases slightly from 8 GHz in [29] to
7.54 GHz here.

B. Sparsity of Impedance Matrices

As expected, the wavelet expansion method yields a sparse
impedance matrix [P,;]. Figs. 7(a) and 7(b) illustrate, re-
spectively, the 3-D logarithmic plots of typical normalized
impedance matrices generated in example 2 by wavelet expan-
sion method (with my, = 15 and m; = 13) and by the PWS
basis functions [28]. It can be observed that the impedance
matrix from wavelets is nearly diagonal or block-diagonal.
Although the size N = 264 of the impedance matrix from
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Fig. 7. Comparison of impedance matricies in the computation of the current
distribution on microstrip floating line resonator using this method and PWS
basis functions in example 2. (a) 3-D logarithmic plots of typical impedance
matrix by using wavelets. (b) 3-D logarithmic plots of typical impedance
matrix by using PWS basis functions.

wavelets is larger than the size N = 92 from PWS basis
functions, the effective size from wavelets is still smaller than
that from PWS basis functions due to the sparsity of the
impedance matrix from wavelets. The sparseness of the matrix
has even more profound significance for the problems where
large matrices are generated.

In order to give a measure of sparsity in an impedance
matrix, we replace each entry of a matrix by its magnitude
normalized by the magnitude of the largest element. Now the
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Fig. 8. Sparsity of impedance matrices, in the computation of the current
distribution on buried microstrip floating line resonator using this method in
example 3. (a) Sparsity of typical impedance matrix with mj = 14 and m; =
13. (b) Sparsity of typical impedance matrix with m; = 14 and m; = 12.

entries below a threshold, say 1076, are set to zero, and the
remaining entries are considered as the significant (non-zero)
elements. The ratio of the significant entries to the total entries
in the matrix measures the sparseness of the matrix. In Fig. 8(a)
the black ink shows the non-zero elements of an impedance
matrix in example 3 with m; = 14 and m; = 13. A similar
result of the same problem in example 3 with more resolution
levels (mj, = 14 and m; = 12) is depicted in Fig. 8(b). In
contrast, a full black square, representing a full matrix, will be

plotted if the PWS basis functions are used. From Fig. 8(a) of
the matrix 416 x 416 and Fig. 8(b) of the matrix 351 x 351 it
can be seen that as more resolution levels are used, the dense
“plateau” area of the impedance matrix shrinks. This is not
surprising. As the decomposition reaches more levels, more
wavelets and less scaling functions are used. The wavelets
possess cancellation and localization properties in addition to
the orthogonality that the scaling functions can only provide.

VII. CONCLUSION

In this paper, a full wave analysis of microstrip floating line
structures by wavelet expansion method has been presented.
Numerical results from the wavelet expansion method are
compared with measurements and previous published data
with good agreement. It has been demonstrated that the
replacement of the PWS bases by the orthogonal wavelets
with compact support can greatly improve the sparseness of
the resulting matrix from the boundary integral equations, in
particular for problems involving large matrices.
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